
Chapter 7

BEAM LOADING AND

ROBINSON’S STABILITY

A klystron coupled to a rf cavity generates electromagnetic fields. The electric field

across the gap of the cavity gives the required acceleration to the particle beam. However,

the particle beam will also excite electromagnetic fields inside the cavity in the same way

as the klystron or the rf source. This excitation of the cavity by the particle beam is called

beam loading. Beam loading has two effects on the rf system. First, the electric field from

beam loading generates a potential, called the beam loading voltage, across the cavity

gap and opposes the accelerating voltage delivered by the klystron. Thus more power has

to be supplied to the rf cavity in order to overcome the effect of beam loading. Second,

to optimize the power of the klystron, the cavity has to be detuned. The detuning has to

be performed correctly. If not, the power delivered by the klystron will not be efficient.

Worst of all, an incorrect detuning will excite an instability. We first study the steady-

state beam loading and later the transient beam loading. Most of the material in this

chapter comes from lecture notes of Wilson [1], Wiedemann [2], and Boussard [3].

7.1 EQUIVALENT CIRCUIT

The rf cavity can be represented by a parallel resonant circuit with an inductance L,

a capacitance C, and a resistor Rs as shown in Fig. 7.1. The resistor Rs is also called

the shunt impedance of the resonator because it is the impedance of the circuit at the
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resonant frequency ωr/(2π), which is given by

ωr =
1√
LC

. (7.1)

The image current of the particle beam is represented by a current source iim. This
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Figure 7.1: Circuit model representing an rf generator current source ig driving a
rf cavity with a beam loading current iim.

is a valid representation from the rigid-bunch approximation, because the velocities and

therefore the current of the beam particles are assumed roughly constant when the beam

passes through the cavity gap. We reference image current here instead of the beam

current ib, because it is the image current that flows across the cavity gap and also into

the cavity. The image current is in opposite direction to the beam current.

On the other hand, the situation is different for the klystron. The velocities of

the electrons as they pass through the the gap of the output cavity of the klystron can

change in response to the cavity fields of the klystron. As a consequence, the rf source

is represented by a current source ig in parallel to loading admittance Yg or impedance

Rg = 1/Yg . The latter is written in terms of the shunt admittance Ys or shunt impedance

Rs of the rf cavity as

Yg = βYs =
β

Rs
, (7.2)

where β is the coupling coefficient still to be defined. The power generated by the klystron

or rf generator consists of two parts: the power dissipated to the generator admittance Yg
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and the power that is available to the cavity and the particle beam. The latter, which is

usually referred to loosely as the generator power, is

Pg =
1

2
YLV

2
g , (7.3)

where Vg is the generator voltage as indicated in Fig. 7.1, which is also the voltage across

the gap of the rf cavity. Here, all currents and voltages referenced are the magnitudes of

sinusoidally varying currents and voltages at or near the cavity resonant frequency, and

the factor 1
2

in Eq. (7.3) indicates the rms value of Pg has been taken. For example, iim
is the magnitude of the Fourier component of the image current at or near the cavity

resonant frequency. Thus, for a short bunch, we have (Exercise 7.1),

iim = 2I0 , (7.4)

with I0 being the dc current of the beam. As phasors, however, they are in the opposite

direction. The admittance YL is called the load cavity admittance, which includes the

admittance of the cavity Ys and also all the contribution from the particle beam. In other

words, for a weak beam, when ib → 0, YL → Ys. At the resonant frequency ωr, the

generator voltage and the generator current are in phase and are related by

Vg =
ig

Yg + YL
, (7.5)

and the generator power becomes

Pg =
1

2

YL
(Yg + YL)2

i2g . (7.6)

The generator power is minimized by equating its derivative with respect to YL to zero,

giving a matching between the source and the load,

YL = Yg = βYs . (7.7)

This is just the usual matching of the input impedance to the output impedance. The

maximized generator power is then

Pg =
i2g

8βYs
=
Rsi2g
8β

(7.8)

Notice that in the situation of an extremely weak beam, this matched condition is just

Yg = Ys with the coupling coefficient β = 1. Equation (7.8) will be used repeatedly below
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and whenever the generator power Pg is referenced, we always imply the matched quantity

satisfying Eq. (7.7).

In high energy electron linacs, bunches are usually accelerated at the peak or crest

of the rf voltage wave in order to achieve maximum possible energy gain. As a result,

the klystron is operated at exactly the same frequency as the resonant frequency of the

rf cavities. Without the rf generator, the beam or image current sees the unloaded shunt

impedance Rs in the cavity and the unloaded quality factor Q0, which can easily be found

to be

Q0 = ωrCRs . (7.9)

With the rf generator attached, however, the beam image current source sees an effective

shunt impedance RL in the cavity, which is the parallel combination of the generator

shunt impedance and the cavity shunt impedance. This is called the cavity loaded shunt

impedance in contrast with the cavity unloaded shunt impedance Rs. We therefore have

RL = (Ys + Yg)
−1 =

Rs

1 + β
. (7.10)

Correspondingly, the beam image current sees a loaded quality factor in the cavity, which

is

QL = ωrCRL =
Q0

1 + β
. (7.11)

The beam loading voltage is the voltage generated by the image current, and is given

by

Vbr =
iim

Yg + Ys
=

iim
Ys(1 + β)

, (7.12)

while the voltage produced by the generator is

Vgr =
ig

Yg + Ys
=

ig
Ys(1 + β)

, (7.13)

where the subscript “r” implies that the operation is at resonant frequency, so that the

currents and voltages are in phase, although they may have sign difference. In terms of

the generator power Pg in Eq. (7.8), the generator voltage at resonance becomes

Vgr =

√
8β

1 + β

√
RsPg . (7.14)
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It is clear that the beam loading voltage is in the opposite direction of the generator

voltage. Thus, the net accelerating voltage is

Vrf = Vgr − Vbr =
√
RsPg

[ √
8β

1 + β

(
1− K

2
√
β

)]
, (7.15)

where

K2 =
i2imRs

2Pg
(7.16)

plays the role of the ratio of the beam loading power to the generator power. The fraction

of generator power delivered to the beam is

η =
iimVrf

2Pg
=

2
√
β

1 + β
K

(
1− K

2
√
β

)
. (7.17)

The power dissipated in the cavity is

Pc =
V 2

rf

2Rs
= Pg

(
2
√
β

1 + β

)2(
1− K

2
√
β

)2

. (7.18)

From the conservation of energy, we must have

Pg = ηPg + Pc + Pr , (7.19)

where Pr is the power reflected back to the generator and is given by

Pr
Pg

=

(
β − 1−K

√
β

1 + β

)2

. (7.20)

So far we have not said anything about the coupling coefficient β. Now we can choose β so

that the generator power is delivered to the cavity and the beam without any reflection,

or from Eq. (7.20), the optimum coupling constant is

K =
βop − 1√

βop

. (7.21)

Notice that this optimization is also a maximization of the accelerating voltage Va = Vrf ,

as can be verified by its differentiation with respect to β.

The description so far has been the steady-state. This means that the rf generator

and the beam current have been turned on for a time long compared to the filling time

of the cavity, which is given by

Tf =
2QL

ωr
. (7.22)
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7.2 BEAM LOADING IN AN ACCELERATOR

RING

In a synchrotron ring or storage ring, it is necessary to operate the rf system off the

crest of the accelerating voltage wave form in order to have a sufficient large bucket area

to hold the bunched beam and to insure stability of phase oscillation. The klystron or

rf generator is operating at the rf frequency ωrf/(2π) = hω0/(2π), where h is an integer

called the rf harmonic, and ω0/(2π) is the revolution frequency of the synchronized beam

particles. Notice that this rf frequency will be the frequency the beam particles experience

at the cavity gap and is different from the intrinsic resonant frequency of the cavity ωr
given by Eq. (7.1). According to the circuit diagram of Fig. 7.1, the impedance of the

cavity seen by the particle at rf frequency ωrf/(2π) can be written as

Zcav =
RL

1− jQL

(
ωr
ωrf
−ωrf

ωr

) = RL cosψ ejψ , (7.23)

where ψ is called the rf detuning angle or just detuning. It is important to point out that

loaded values have been used here, because those are what the image current sees. When

the deviation of ωrf from ωr is small, the detuning angle can be approximated by

tanψ = 2QL

ωr−ωrf

ωr
. (7.24)

Note that in this section we have used j instead of −i, because phasor diagrams are cus-

tomarily drawn using this convention. Phasors, as illustrated in Fig. 7.2, are represented

by overhead tildes rotating counter-clockwise with angular frequency ωrf if there is only

one bunch in the ring. If there are Nb equal bunches in the ring separated equally by

hb = h/Nb rf buckets, where h is the rf harmonic, we can also imagine the phasors to be

rotating at angular frequency ωrf/hb. They are therefore the Fourier components at the rf

frequency or ωrf/hb. This implies that we are going to see the same phasor plot for each

passage of a bunch through the rf cavity. In order to be so, the beam loading voltage

should have negligible decay during the time interval Tb = 2πhb/ωrf . In order words, we

require Tb� Tf in this discussion, where Tf is the fill time of the cavity.

In general, the image current phasor ĩim has the same magnitude as that of the

beam current phasor ĩb, although in the opposite direction. When the image current ĩim
interacts with the loaded cavity, according to Eq. (7.23), a beam loading voltage Ṽb will
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Figure 7.2: Phasor plot showing the beam loading voltage phasor Ṽb induced in the
rf cavity by the image current phasor ĩim, which lags Ṽb by the detuning angle ψ.
Also plotted is the beam loading voltage phasor Ṽbr, with Vb = Vbr cosψ when the
beam current is at the crest of the rf wave with no detuning.

be produced and is given by

Ṽb = ĩimRL cosψejψ , (7.25)

and

Vb = Vbr cosψ . (7.26)

Thus the voltage phasor always leads the current phasor by the detuning phase ψ and the

magnitude of the phasor Ṽb is less than its value at the cavity resonant frequency Vbr by

the factor cosψ. If one likes, one can also introduce the phasor Ṽbr which is in phase with

the current phasor ĩim and has the magnitude given by Eq. (7.26). This is illustrated in

Fig. 7.2.

The phasor plot showing the contribution of both the beam loading voltage phasors

Ṽb and the generator voltage phasor Ṽg is shown in Fig. 7.3. We see that both the beam

loading voltage phasor Ṽb and the generator voltage phasor Ṽg are at a phase ψ ahead of

their respective current phasors ĩim and ĩg. Since these two voltage phasors add up to give

the gap voltage phasor Ṽrf which has a synchronous angle φs, we must have after dividing

by Rs cosψ,

ig sinψ = iim sin(π
2
− φs + ψ) . (7.27)

Resolving the current contributions along ĩg, we have

ig = i0 + iim sinφs , (7.28)

where i0 = Vrf/RL = (1 + β)Vrf/Rs is the total current in phase with the cavity gap
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Figure 7.3: Phasor plot showing the vector addition of the generator voltage phasor
Ṽg and the beam loading voltage phasor Ṽb to give the gap voltage phasor Ṽrf in a
rf cavity. Note the detuning angle ψ which puts the gap current phasor ĩg in phase
with the gap voltage phasor.

voltage. Eliminating ig, we arrive at

tanψ =
iim cosφs

i0
. (7.29)

Now the generator power Vg can be computed with the aid of Eq. (7.14), namely,

Pg =
(1 + β)2V 2

gr

8βRs
, (7.30)

where Vgr is the generator voltage at the cavity resonant frequency, and is related to the

generator voltage Vg at the rf frequency by Vg = Vgr cosψ. Using the cosine law for the

triangle made up from Ṽg , Ṽb, and Ṽrf , it is easy to obtain

V 2
g = V 2

b + V 2
rf − 2VbVrf sin(ψ − φs) , (7.31)

or

V 2
gr = V 2

br + V 2
rf (1 + tan2 ψ)− 2VbrVrf(tanψ cosφs − sin φs) , (7.32)

where Vbr = Vb/ cosψ is the beam loading voltage at the cavity resonant frequency. With

the correct detuning, Eq. (7.29) and the definition of i0 in Eq. (7.28), it is then easy to
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show that

Pg =
(1 + β)2

8β

(Vrf + Vbr sinφs)2

Rs
, (7.33)

where

Vbr =
iimRs

1 + β
(7.34)

is the beam loading voltage at the cavity resonant frequency. Again we can optimize the

generator power by choosing the best coupling constant β, which turns out to be

βop = 1 +
iimRs sinφs

Vrf

= 1 +
Pb
Pc

, (7.35)

where

Pc =
V 2

rf

2Rs
(7.36)

is the power dissipated in the walls of the cavity and

Pb =
1

2
iimVrf sin φs = I0Vrf sinφs . (7.37)

Here, we have used Eq. (7.4), the fact that the Fourier component image current at the rf

frequency (or at ωrf/hb) is nearly twice the dc beam current I0 when the bunch is short.

Obviously, Va = Vrf sinφs is the accelerating voltage. At the optimized coupling constant,

the generator power becomes

Pg op =
V 2

rf

2Rg
=

V 2
rf

2Rs
βop = Pb + Pc , (7.38)

which just states that the power is transmitted to the cavity completely without any

power reflected.

7.3 ROBINSON’S STABILITY CRITERIA

We are now in the position to discuss the conditions for phase stability. Suppose that

center of the bunch has the same energy as the synchronous particle, but is at a small phase

advance φrf = ε > 0, as depicted by Point 1 in the synchrotron oscillation and the phasor

ĩb in the phasor plot in Fig. 7.4. The phasor ĩb arrives earlier by being ahead of the x-axis

at a small angle ε > 0. Then the accelerating voltage it sees will be Vrf sin(φs−ε) instead

of Vrf sin φs, or an extra decelerating voltage of εVrf cosφs if 0 < φs <
1
2
π. Receiving less



7-10 CHAPTER 7. BEAM LOADING AND ROBINSON’S STABILITY
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Figure 7.4: With the bunch center at Point 1 in the synchrotron oscillation, the
beam current phasor ĩb arrives earlier by being ahead of the x-axis at a small angle
ε > 0 in the phasor plot. The bunch sees a smaller rf voltage Vrf sin(φs−ε) if the
synchronous phase 0 < φs <

1
2π. It is decelerated. Below transition, it will arrive

not so early in the next turn and phase stability is therefore established.

energy from the rf voltage than the synchronous particle will slow the bunch. If the beam

is below transition, this implies the reduction of its revolution frequency, so that after

the next h rf periods its arrival ahead of the synchronous particle will be smaller or ε

will become smaller. The motion is therefore stable. Therefore to establish stable phase

oscillation when beam loading can be neglected, one requires{
0 < φs <

π
2

below transition,
π
2
< φs < π above transition.

(7.39)

This is just the condition of phase stability and there is no damping at all. There is

usually a loop that monitors the beam loading and feedbacks onto the generator current

so as to maintain the required rf gap voltage and synchronous phase. This explains why

we have considered the phasor Ṽrf unperturbed.

Next, we consider the interaction of the beam with the impedance of the rf system.

During half of a synchrotron period, the center of the bunch is at a higher energy than the

synchronous particle. For the sake of convenience, choose the particular moment when

the phase of bunch center is just in phase with the synchronous particle, so that the

phasor ĩb is exactly along the x-axis. This is illustrated by Point 2 in the synchrotron

oscillation and the beam current phasor being in phase with the x-axis in the phasor plot
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Figure 7.5: With bunch center at Point 2 in the synchrotron oscillation, the beam
current phasor ĩb is in phase with the x-axis in the phasor plot. The bunch sees
a smaller rf voltage Below transition, higher energy implies higher effective rf fre-
quency ωrf . The bunch center sees a smaller effective detuning angle and loses more
energy per turn than if the energy of the bunch is larger at Point 3. The synchrotron
oscillation amplitude is therefore damped.

in Fig. 7.5. Below transition, however, higher energy implies higher revolution frequency

ω0. The detuning ψ which is defined by

tanψ = 2QL

ωr − ωrf

ωr
(7.40)

will therefore be effectively smaller from the view of the bunch center, when we consider

the effective rf frequency as ωrf = hω0. The energy loss per turn, which is iim|Zcav| cosψ,

will be larger than if the bunch center is synchronous. For the other half of the syn-

chrotron period, for example, at Point 3, the beam particle has an energy smaller than

the synchronous particle and revolves with a lower frequency, and therefore sees a larger

effective detuning. Again we choose the moment when the phase of the bunch center is

just in phase with synchronous particle. The bunch will lose less energy than if it is syn-

chronous. The result is a gradual decrease in the energy offset oscillation after oscillation.

This reduction of synchrotron oscillation amplitude is called Robinson damping. Notice

that if the detuning is in the other direction, ψ < 0, the beam particle will lose less energy

when its energy is higher than synchronous and lose more energy when its energy is less.

The beam will therefore be Robinson unstable. The opposite is true if the beam is above
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transition. We therefore have the criterion of Robinson stability:{
ψ > 0 or ωr > ωrf below transition,

ψ < 0 or ωr < ωrf above transition.
(7.41)

Notice that so far we have not imposed any optimization condition on the rf system. If

the cavity tuning is adjusted so that the generator current ĩg is in the same direction as

the rf voltage Ṽrf , so that the beam-cavity impedance appears to be real as demonstrated

in Fig. 7.3, the beam will always be Robinson stable, because the detuning will always

satisfy Eq. (7.41) according to Eq. (7.29).

When the beam current is very intense, the phase loop may not be able to maintain

the proper Ṽrf . Thus the condition of phase stability in Eq. (7.39) will be modified,

because the effect of beam loading must be included. Now, go back to Fig. 7.4 when the

beam current phasor arrives at an angle ε > 0 ahead of the x-axis but is at the same

energy as the synchronous particle, the image current phasor ĩim will also advance by the

same angle ε after h rf periods. Therefore, there will be an extra beam loading voltage

phasor εiimRL cosψ ej(ψ+3π/2). If ψ < 0, this phasor will point into the 3rd quadrant and

decelerate the particle in concert with εVrf cosφs in slowing the beam, thus causing no

instability below transition. On the other hand, if ψ > 0, this phasor will point into the

4th quadrant and accelerate the particle instead. To be stable, the extra accelerating

voltage on the beam must be less than the amount of decelerating voltage εVrf cosφs, or[
Vrf sin(φs−ε)−Vrf sinφs

]
+εiimRL cosψ sinψ ≈ −εVrf cosφs+Vbr cosψ sinψ < 0 . (7.42)

Thus for phase stability, we require

Vbr
Vrf

<
cosφs

sinψ cosψ

{
ψ > 0 below transition,

ψ < 0 above transition,
(7.43)

which is called Robinson’s high-intensity criterion of stability. In above, Vbr = iimRL is

the in-phase beam loading voltage when the beam is in phase with the loaded cavity

impedance.

Now let us impose the condition that the generator current ĩg is in phase with the rf

voltage Ṽrf . First, we have i0 = Vrf/RL, so that Eq. (7.43) can be rewritten as

iim
i0

<
cosφs

sinψ cosψ

{
ψ > 0 below transition,

ψ < 0 above transition.
(7.44)
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Second, the in-phase condition implies Eq. (7.29), which simplifies the above to

iim
i0

<
1

sinφs
, (7.45)

after eliminating the detuning. If we further optimize the generator power by choosing

the coupling constant βop given by Eq. (7.35), it is easy to show that

iim sinφs
i0

=
βop − 1

βop + 1
< 1 . (7.46)

In other words, this phase stability criterion will always be satisfied.

Notice that this Robinson’s high-intensity criterion of stability is only a criterion

of phase stability similar to the phase stability condition of Eq. (7.39). Satisfying this

criterion just enables stable oscillating like sitting inside a stable potential well. Violating

this criterion will place the particle in an unstable potential well so that phase oscillation

will not be possible. To include damping or antidamping due to the interaction of the

beam with the cavity impedance, the first criterion of Robinson stability, Eq. (7.41) must

be satisfied also.

7.4 TRANSIENT BEAM LOADING

By transient we mean that the fill time of the cavity Tf is not necessarily much

longer than the time interval Tb for successive bunches to pass through the cavity. In

other words, the beam loading voltage from the first bunch will have significant decay

before the successive bunch arrives.

First, let us understand how the transient beam loading occurs. As the bunch of

charge q > 0 passes through the cavity gap, a negative charge equal to that carried by the

bunch will be left by the image current at the upstream end of the cavity gap. Since the

negative image current will resume from the downstream end of the cavity gap following

the bunch, an equal amount of positive charge will accumulate there. Thus, a voltage will

be created at the gap opposing the beam current and this is the transient beam loading

voltage as illustrated in Fig. 7.6. For an infinitesimally short bunch, this transient voltage

is

Vb0 ∼
q

C
=
qωrRs

Q0
, (7.47)

where C is the equivalent capacitance across the gap of the cavity. Notice that we will

arrive at the same value if the loaded shunt impedance RL and the loaded quality factor
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Figure 7.6: As a positively charged bunch passes through a cavity, the image current
leaves a negative charge at the upstream end of the cavity gap. As the image current
resumes at the downstream side of the cavity, a positive charge is created at the
downstream end of the gap because of charge conservation, thus setting up an electric
field ~E and therefore the induced beamloading voltage.

QL are used instead. Due to the finite quality factor QL, this induced voltage across the

gap starts to decay immediately, hence the name transient beam loading. We will give

concrete example about the size of the voltage later. The next question is how much of

this beam loading voltage will be seen by the bunch. This question is answered by the

fundamental theorem of beam loading first derived by P. Wilson.

7.4.1 FUNDAMENTAL THEOREM OF BEAM LOADING

When a particle of charge q passes through a cavity that is lossless (infinite Rs

and infinite Q0), it induces a voltage Vb0 which will start to oscillate with the resonant

frequency of the cavity. Suppose that the particle sees a fraction f of Vb0, which opposes

its motion. After half an oscillation of the cavity, a second particle of charge q passes

through the cavity. The first induced voltage left by the first is now in the direction of the

motion of the second particle and accelerates the particle. At the same time, this second

particle will induce another retarding voltage Ṽb0 which it will see as a fraction f . This

second retarding voltage will cancel exactly the first one inside the cavity, since the cavity

is assumed to be lossless. In other words, no field will be left inside the cavity after the
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Figure 7.7: Phasor plot showing the the instant just after the second passage of
the charged particle through the lossless cavity. The induced beam loading voltage
phasors for the two passages are labeled as V (1)

b0 and V (2)
b0 , respectively.

passage of the two particles. The net energy gained by the second particle is

∆E2 = qVb0 − fqVb0 , (7.48)

while the first particle gains

∆E1 = −fqVb0 . (7.49)

Conservation of energy requires that the total energy gained by the two particles must be

zero. This implies f = 1
2
. In other words, the particle sees one half of its transient beam

loading voltage, which is the fundamental theorem of beam loading.

The following is a more general proof by Wilson. The first particle induces a voltage

phasor Ṽ
(1)
b0 in the cavity which may lie at an angle ε with respect to the voltage Ṽe seen by

that particle. As before, we suppose Ve = fVb0, where Ve and Vb0 are the magnitudes of,

respectively, Ṽe and Ṽ (1)
b0 . Some time later when the cavity phase changes by θ, the same

particle returns via bending magnets or whatever and passes through the cavity again.

It induces a second beam loading voltage phasor Ṽ
(2)
b0 . At this moment, the phasor Ṽ

(1)
b0

rotates to a new position as illustrated in Fig. 7.7. The net energy lost by the particle on

the two passes is

∆E = 2fqVb0 + qVb0 cos(ε+ θ) . (7.50)
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The cavity, however, gains energy because of the beam loading fields left behind. The

energy inside a cavity is proportional to the square of the gap voltage. If the cavity is

free of any field to start with, the final energy stored there becomes

∆Ec = α

(
2Vb0 cos

θ

2

)2

= 2αV 2
b0(1 + cos θ) , (7.51)

where α is a proportionality constant. From the conservation of energy, we get

2fqVb + qVb0(cos ε cos θ − sin ε sin θ)− 2αV 2
b0(1 + cos θ) = 0 . (7.52)

Since θ is an arbitrary angle, we first obtain

qVb0 sin ε = 0 ,

qVb0 cos ε = 2αV 2
b0 ,

2fqVb0 = 2αV 2
b0 .

(7.53)

The first equation gives ε = 0 implying that the transient beam loading voltage must have

a phase such as to maximally oppose the motion of the inducing charge. Clearly ε = π

will not be allowed because this leads to the unphysical situation of the particle gaining

energy from nowhere. Finally, we obtain f = 1
2
.

7.4.2 MULTI-BUNCH PASSAGE

Let the bunch spacing be hb rf buckets or Tb in time. The cavity time constant

or filling time is Tf = 2QL/ωr and the e-folding voltage decay decrement between two

successive bunch passages is δL = Tb/Tf . During this time period, the phase of the rf

fields changes by ωrTb and the rf phase by ωrfTb = 2πhb. The phasors therefore rotate by

the angle Ψ = ωrTb − 2πhb, which can also be written in terms of the detuning angle,

Ψ = (ωr − ωrf)Tb = δL tanψ , (7.54)

where Eq. (7.24) has been used. The transient beam loading voltage left by the first

passage of a short bunch carrying charge q is Vb0 = q/C = qωrRL/QL. The total beam

loading voltage Vb seen by a short bunch is obtained by adding up vectorially the beam

loading voltage phasors for all previous bunch passages. The result is

Vb = 1
2
Vb0 + Vb0(e−δLejΨ + e−2δLej2Ψ + · · · ) , (7.55)
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ψ

Figure 7.8: Transient beam loading voltages from equally spaced bunches. Each
preceding voltage phasor has a phase advance of ψ because of detuning and a decay
of e−δL . Note that the bunch that is just passing by sees only half of its induced
voltage Ṽb0. These voltage phasors add up to the total beam loading voltage phasor
Ṽb. Together with the generator voltage Ṽg, the cavity gap voltage results at the
synchronous angle φs.

where the 1
2

in the first term on the right side is the result of Wilson’s fundamental theorem

of beam loading, which states that a particle sees only one-half of its own induced voltage.

It is worth pointing out that these voltages are excitations of the cavity and are therefore

oscillating at the cavity resonant frequency (all higher order modes of the cavity are

neglected). These infinite series of induced voltage phasors are illustrated in Fig. (7.8).

The summation can be performed exactly giving the result

Vb = Vb0
[
F1(δL, ψ) + jF2(δL, ψ)

]
, (7.56)

with

F1 =
1− e−δL

2D
, F2 =

e−δL sin(δL tanψ)

D
, (7.57)

D = 1− 2e−δL cos(δL tanψ) + e−2δL . (7.58)
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In terms of the coupling constant β and detuning angle ψ, we have

tanψ = 2QL

ωr − ωrf

ωr
,

QL =
Q0

1 + β
,

δL = δ0(1 + β) ,

(7.59)

where we have defined δ0 = Tb/Tf0 with Tf0 being the filling time of the unloaded cavity.

Then the single bunch induced beam loading voltage becomes

Vb0 = 2I0Rsδ0 , (7.60)

use has been made of the approximation for short bunches, so that the Fourier component

of the current of a bunch at frequency ωrf/hb is equal to twice its dc value or ib = 2I0 and

I0 = q/Tb. Putting things together, we get

Vb = 2I0Rsδ0

[
F1(β, φ) + jF2(β, φ)

]
, (7.61)

with

F1(β, φ) =
1− e−δ0(1+β)

2D
, (7.62)

F2(β, φ) =
e−δ0(1+β) sin[δ0(1 + β) tanψ]

D
, (7.63)

D = 1− 2e−δ0(1+β) cos[δ0(1 + β) tanψ] + e−2δ0(1+β) . (7.64)

Some comments are in order. In Fig. 7.8, if we consider the beam loading voltage

phasors that rotate by the angle Ψ and have its magnitude diminished by the factor e−δL

for each successive time period Tb to come from the passage of one short bunch, the

plot shows the transient nature of beam loading. However, what we consider is in fact

the diminishing beamloading voltage phasors coming from successive bunches that pass

through the cavity at successive time period Tb earlier. For this reason, what Fig. 7.8

shows is actually the steady-state situation of the beam loading voltages, because for

each time interval Tb later, we will see exactly the spiraling beam loading phasor plot

and the same total beam loading voltage phasor Ṽb. For this reason, we can add into the

plot the generator voltage phasor Ṽg in the same way as the plot in Fig. 7.3. In fact,

the plot in Fig. 7.3 provides only an approximate steady-state plot, because the beam

loading voltage phasor there does attenuate a little bit after a 2π rotation of the phasors,
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although a high QL has been assumed. However, such attenuation has already been taken

care of in Fig. 7.8, resulting in the plotting of an exact steady state. Although the total

beam loading voltage phasor Ṽb seen by the passing bunch in Fig. 7.8 has the period of Tb,

nevertheless, it is not sinusoidal. On the other hand, the beam loading voltage phasor Ṽb
seen by the bunch in Fig. 7.3 is sinusoidal because it is induced by a sinusoidal component

of the beam.

Using Eq. (7.14), the generator power Vg can now be computed:

Pg=
(1 + β)2V 2

rf

8βRs cos2 ψ

{[
sin φs−

ibRsδ0

Vrf
F1(δ0, β)

]2

+

[
cosφs+

ibRsδ0

Vrf
F2(δ0, β)

]2
}

. (7.65)

In the situation when the generator current ĩg is in phase with the rf voltage Ṽrf , the

generator power can be minimized so that there will not be any reflection. Similarly,

the generator power can also be optimized by choosing a suitable coupling coefficient β.

Unfortunately, these optimized powers cannot be written as simple analytic expressions.

A. LIMITING CASE WITH δ0 → 0

When the bunch spacing Tb is short compared to the unloaded cavity filling time Tf0,

simplified expressions can be written for the total beam loading voltage Vb. One gets

F1(δ0, β) =
1

δ0(1 + β)(1 + tan2 ψ)
, (7.66)

F2(δ0, β) =
tanψ

δ0(1 + β)(1 + tan2 ψ)
, (7.67)

so that

Vb =
ibRs

1 + β

1

1− j tanψ
. (7.68)

Notice that this is exactly the same expression in Eq. (7.25). In fact, this is to be expected,

because we are in the situation of Tb� Tf , or the case of a high QL resonating cavity.

One may think that when δ0 → 0, the phase angle Ψ = δ0(1 + β) tanψ → 0. Thus,

the transient beam loading voltage Ṽb0 will not decay and will also line up for successive

former bunch passages, leading to an infinite total beam loading voltage Vb seen by the

bunch. However, δ0 → 0 implies letting Q0 → ∞ while keeping the shunt impedance

fixed. Thus, the instantaneous beam loading voltage Vb0 = q/C = qωrRs/Q0 = 2ibRsδ0

also goes to zero. Thus the summation has to be done with care. For successive Vb0 to
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wrap around in a circle, one needs approximately 2π/Ψ Vb0’s. The radius of this circle

will be Vb0/Ψ. As δ0 → 0, this radius becomes

lim
δ0→0

Vb0
Ψ

=
2ibRs

tanψ
, (7.69)

which is finite. In fact, this is roughly the same as the total beam loading voltage Vb as

δ0 → 0.

B. LIMITING CASE WITH Tb � Tf

This is the situation when the instantaneous beam loading voltage decays to zero

before a second bunch comes by. It is easy to see that F1(δ0, β)→ 1
2

and F1(δ0, β)→ 0.

From Eq. (7.65), it is clear that the generator power increases rapidly as the square of

δ0. This is easy to understand, because the rf power that is supplied to the cavity gets

dissipated rapidly. A pulse rf system will then be desirable. In such a system, the power

is applied to the cavity for about a filling time preceding the arrival of the bunch. For

most of the time interval between bunches, there is no stored energy in the cavity at all

and hence no power dissipation.

7.5 AN EXAMPLE

Let us look into the design of a proposed future Fermilab pre-booster with has a

circumference of 158.07 m. It accelerates 4 bunches each containing 0.25 × 1014 protons

from kinetic energy 1 to 3 GeV. Because of the high intensity of the beam, the problems

of space charge and beam loading must be addressed. We wish to examine the issues of

beam loading and Robinson instabilities based on a preliminary rf system proposed by

Griffin [5].

7.5.1 THE RAMP CURVE

Because of the high beam intensity, the longitudinal space-charge impedance per

harmonic is Z‖/n|spch ∼ −j100 Ω. But the beam pipe discontinuity will contribute only

about Z‖/n|ind ∼ j20 Ω of inductive impedance. The space-charge force will be a large

fraction of the rf-cavity gap voltage that intends to focus the bunch. A proposal is to

insert ferrite rings into the vacuum chamber to counteract this space-charge force [6]. An

experiment of ferrite insertion was performed at the Los Alamos Proton Storage Ring and

the result has been promising [7]. Here we assume such an insertion will over-compensate
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Figure 7.9: A typical ramp curve for the future Fermilab pre-booster.

all the space-charge force leaving behind about Z‖/n|ind ≈ j25 Ω of inductive impedance.

An over-compensation of the space charge will help bunching so that the required rf

voltage needed will be smaller.

The acceleration from kinetic energy 1 to 3 GeV in 4 buckets at a repetition rate of

15 Hz is to be performed by resonant ramping. In order to reduce the maximum rf voltage

required, about 3.75% of second harmonic is added. A typical ramp curve, with bucket

area increasing quadratically with momentum, is shown in Fig. 7.9, which will be used as

a reference for the analysis below. If the present choice of initial and final bucket areas

and bunch areas is relaxed, the fraction of second harmonic can be increased. However,

when the second harmonic is beyond ∼ 12.5%, it will only flatten the rf gap voltage in

the ramp but will not decrease the maximum significantly.

7.5.2 THE RF SYSTEM

According to the ramp curve in Fig. 7.9, the peak voltage of the rf system is Vrf ≈
185 kV. Griffin proposed 10 cavities [5], each delivering a maximum of 19.0 kV. Each cavity

contains 26.8 cm of ferrite rings with inner and outer radii 20 and 35 cm, respectively. The

ferrite has a relative magnetic permeability of µr = 21. The inductance and capacitance

of the cavity are L ∼ 0.630 µH and C ∼ 820 pF. Assuming an average ferrite loss of

134 kW/m3, the dissipation in the ferrite and wall of the cavity will be P ∼ 14.2 kW. The
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Figure 7.10: Transient beam-loading power tetrode connected directly to a rf cavity
gap.

mean energy stored is W ∼ 0.15 J. Therefore each cavity has a quality factor Q ∼ 459

and a shunt impedance Rs ∼ 12.7 kΩ.

Because each bunch contains q = 4.005 µC, the transient beam loading is large. For

the passage of one bunch, 4.005 µC of positive charge will be left at downstream end of

the cavity gap creating a transient beam loading voltage of Vb0 ∼ q/C = 5.0 kV, where

C = 820 pF is the gap capacitance. We note from Fig. 7.9 that the accelerating gap

voltages at both ends of the ramp are only about or less than 10 kV in each cavity. If

the wakes due to the bunches ahead do not die out, we need to add up the contribution

due to all previous bunch passages. Assuming a loaded quality factor of QL = 45, we

find from Eq. (7.61) that the accumulated beam-loading voltage can reach a magnitude

of Vb = 36 kV when the detuning angle is zero.

A feed-forward system is suggested which will deliver via a tetrode the same amount

of negative charge to the downstream end of the gap so as to cancel the positive charge

created there as the beam passes by. Without the excess positive charge, there will not

be any more transient beam loading. This is illustrated in Fig. 7.10.

Here, we are in a situation where the image current iim passing through the cavity

gap is not equal to the beam current ib. However, either at zero detuning or nonzero

detuning, Eqs. (7.17) and (7.37) indicate that the portion of generator power transmitted

to the acceleration of the beam is directly proportional to the magnitude of the image
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current. If the image current goes to zero in this feed-forward scheme, this implies that

the rf generator is not delivering any power to the particle beam at all, although the beam

is seeing an accelerating gap voltage. Then, how can the particle beam be accelerated?

The answer is simple, the power comes from the tetrode that is doing the feed-forward.

This explains why the tetrode has to be of high power.

Actually, the feed-forward system is not perfect and we assume that the cancellation

is 85 %. For a δ-function beam, the component at the fundamental rf frequency is 56.0 A.

Therefore, the remaining image current across the gap is iim = 8.4 A. To counter this

remaining 15% of beam loading in the steady state, the cavity must be detuned according

to Eq. (7.29) by the angle

ψ = tan−1

(
iim cosφs

i0

)
, (7.70)

where φs is the synchronous angle and i0 = Vrf/Rs is the cavity current in phase with the

cavity gap voltage Vrf . For high quality factor of Q = 459 which is accompanied by a large

shunt impedance, the detuning angle will be large. Corresponding to the ramp curve of

Fig. 7.9, the detuning angle is plotted as dashes in Fig. 7.11 along with the synchronous

angle and maximum cavity gap voltage. We see that the detuning angle is between 80◦

and 86◦, which is too large. If a large driving tube is installed with anode (or cathode

follower) dissipation at ∼ 131 kW, the quality factor will be reduced to the loaded value

of QL ∼ 45 and the shunt impedance to the loaded value of RL ∼ 1.38 kΩ. The detuning

angle then reduces to ψ ∼ 29◦ at the center of the ramp and to ∼ 40◦ or ∼ 56◦ at either

end. This angle is also plotted in Fig. 7.11 as a dot-dashed curve for comparison. Then,

this rf system becomes workable.

7.5.3 FIXED-FREQUENCY RF CAVITIES

Now we want to raise the question whether it is possible to have a fixed resonant

frequency for the cavity. A fixed-frequency cavity can be a very much simpler device

because it may not need any biasing current at all. Thus the amount of cooling can be

very much reduced and even unnecessary. It appears that the resonant frequency of the

cavity should be chosen as the rf frequency at the end of the ramp, or fR = 7.37 MHz

so that the whole ramp will be immune to Robinson’s phase-oscillation instability [4].

However, the detuning will be large. For example, at the beginning of the ramp where

frf = 6.64 MHz, the detuning angle becomes ψ = 85.2◦. Since the beam-loading voltage

Vim is small, the generator voltage phasor Ṽg will be very close to the gap voltage phasor
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Figure 7.11: Detuning angle for the high Q = 459 and low QL = 45 situations.

Ṽrf . As a result, the angle θ between the gap voltage Ṽrf and the generator current phasor

ĩg will be close to the detuning angle, as demonstrated in Fig. 7.12. For example, Fig. 7.13

shows that, at the beginning of the ramp, the detuning angle is ψ = 85.2◦. Although the

total power delivered by the generator

1
2
ĩg · Ṽrf =

V 2
rf

2RL

+ 1
2
iimVrf cosφs (7.71)

is independent of θ, the energy capacity of the driving tube has to be very large.

Another alternative is to choose the resonant frequency of the cavity to be the rf

frequency near the middle of the ramp. Then the detuning angle ψ and therefore the

angle θ between Ṽrf and ĩg will be much smaller at the middle of the ramp when the gap

voltage is large. Although θ will remain large at both ends of the ramp, however, this is

not so important because the gap voltages are relatively smaller there. Figure 7.14 shows

the scenario of setting the cavity resonating frequency fR equal to frf at the ramp time

of 13.33 ms.

There is a price to pay for this choice of fR; namely, there will be Robinson phase

instability for the second half of the ramp when the rf frequency is larger than fR. The

instability comes from the fact that, below transition, the particles with larger energy have
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Ṽim

ĩg

ĩb

ψ

ψ
ϕs

−θ

Figure 7.12: For a fixed cavity resonant frequency, the detuning angle ψ is fixed at
each ramp time. When beam-loading is small, the angle θ between the gap voltage
Ṽrf and the generator current ĩg will be close to ψ and will be large.

Figure 7.13: When the cavity resonant frequency is chosen as the rf frequency at
the end of the ramp, both the detuning angle as well as the angle between the cavity
gap voltage Ṽrf and the generator current Ĩg are large.
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Figure 7.14: When the cavity resonant frequency is chosen as the rf frequency at
the middle of the ramp at 13.33 ms, although the detuning angle as well as the angle
between the cavity gap voltage Ṽrf and the generator current Ĩg are large at both
ends of the ramp, they are relatively smaller at the middle of the ramp where the
gap voltage is large.

higher revolution frequency and see a smaller real impedance of the cavity, thus losing

less energy than particles with smaller energy. Therefore, the synchrotron amplitude will

grow. In other words, the upper synchrotron sideband of the image current interacts

with a smaller real impedance of the cavity resonant peak than the lower synchrotron

sideband. However, since the loaded quality factor QL is not small, the difference in real

impedance at the two sidebands is only significant when the rf frequency is very close

to the cavity resonant frequency. Thus, we expect the instability will last for only a

very short time during the second half of the ramp. The growth rate of the synchrotron

oscillation amplitude has been computed and is equal to [2]

1

τ
= − iimβωs(R+−R−)

2Vrf cosφs
, (7.72)

where

R+ −R− = Re
[
Zcav(ωrf +ωs)− Zcav(ωrf−ωs)

]
, (7.73)

iim is the image current, β is the velocity with respect to light velocity, ωs/(2π) is the

synchrotron frequency, and Zcav is the longitudinal impedance of the cavity. We see from
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Fig. 7.14 that the growth occurs for only a few ms and the growth time is at least ∼ 25 ms.

The total integrated growth increment from ramp time 13.33 ms is ∆G =
∫
τ−1dt = 0.131

and the total growth is e∆G − 1 = 14.0% which is acceptable.

We also want to see whether Robinson’s criterion for stable phase oscillation is sat-

isfied for this rf consideration. For the second half of the ramp where the detuning angle

ψ < 0, the phase is stable because we are below transition and the synchronous angle φs
is between 0 and 1

2
π. For the first half of the ramp where ψ > 0, the sufficient condition

for stability is, from Eq. (7.43), the high-intensity Robinson’s criterion:

Vbr

Vrf
<

cosφs
sinψ cosψ

, (7.74)

where Vbr = iimRL is the in-phase beam loading voltage. Figure 7.15 plots both sides of

the criterion and shows that the criterion is well satisfied.

Figure 7.15: Plot showing the high-intensity Robinson’s phase-stability criterion is
satisfied.

Finally let us compute the beam loading voltage seen by a bunch including all the

effects of the previous bunch passage. In this example, δL ≈ πhb/QL = 0.0698 for hb = 1

and QL = 45. When the detuning angle ψ = 0, Vb ≈ Vb0/(2δL). The functions F1 and

F2 are computed at some other values of ψ, which are listed in Table 7.1 and plotted in
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Fig. 7.16. We see that the total transient beam loading Vt falls rapidly as the detuning

angle ψ increases. It vanishes approximately ∼ 88.7◦ and oscillates rapidly after that.

However, the choice of a large ψ is not a method to eliminate beam loading, because the

steady-state beam loading will not be reduced.

Figure 7.16: Plot of transient beam-loading voltage including all previous bunch
passages,

q

C
(F1 + jF2), versus detuning angle ψ.

Table 7.1: F1 and F2 for some values of the detuning angle ψ.

ψ Ψ = δL tanψ F1 F2

0◦ 0◦ ∼ 1

2δL
0

84.9◦ 45◦ 0.061 1.197

87.5◦ 90◦ ∼ δL
4

∼ 1

2

88.7◦ 180◦ ∼ δL
8

0
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7.6 EXERCISES

7.1. For a Gaussian bunch with rms length στ in a storage ring, find the Fourier com-

ponent of the current at the rf frequency. Give the condition under which this

component is equal to twice the dc current.

7.2. Prove the fundamental theorem of beam loading when there are electromagnetic

fields inside before the passage of any charged particle.

7.3. In Section 7.2, rf-detuning and Robinson’s stability condition have been worked out

below transition. Show that above transition the detuning according the Fig. 7.3

leads to instability. Draw a new phasor diagram for the situation above transition

with stable rf-detuning. Rederive Robinson’s high-intensity stability criterion above

transition.

7.4. Derive Eq. (7.65), the generator power delivered to the rf system with multi-passage

of equally spaced bunches.

7.5. On passage through a cavity, the beam loading potential seen by a particle inside a

bunch at a distance z behind the bunch center is

V (z) =

∫ z

−∞
dz′ρ(z′)W0(z − z′) , (7.75)

where ρ(z) is the charge distribution of the bunch, and W0 is the wake function of

the cavity. (a) Show that for a Gaussian charge distribution with rms length σ` the

beam loading voltage seen by the bunch is

V (z) = − qωrRs

2Q0 cosφ0
Re ejφ0−z2/(2σ2

` )w

[
σ`ωrejφ0

c
√

2
− jz√

2σ`

]
, (7.76)

where q is the total charge in the bunch, sinφ0 = 1/(2Q0), and w is the complex

error function defined as

w(z) = e−z
2

(
1 +

2j√
π

∫ z

0

et
2

dt

)
. (7.77)

(b) Using the property of the complex error function,

lim
σ`→0

w

(
−jz√

2σ`

)
= lim

σ`→0

2√
π
ez

2/(2σ2
` )

∫ ∞
− z√

2σ`

e−t
2

dt =


0 z < 0 ,

1 z = 0 ,

2 z > 0 ,

(7.78)
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show that as the bunch length shortens to zero, the head, center, and tail of the

bunch are seeing the transient beamloading voltage

V (z) =



0 z < 0 (head) ,

− qωrRs

2Q0 cosφ0
z = 0 (center) ,

− qωrRs

Q0 cosφ0
z > 0 (tail) .

(7.79)

7.6. Compute the transient beam loading voltage in the last problem by using a parabolic

distribution

ρ(z) =
3q

4`

(
1− z2

`2

)
. (7.80)

where ` is the half length of the bunch.
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